If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16Y^2+100Y+86
We move all terms to the left:
-(-16Y^2+100Y+86)=0
We get rid of parentheses
16Y^2-100Y-86=0
a = 16; b = -100; c = -86;
Δ = b2-4ac
Δ = -1002-4·16·(-86)
Δ = 15504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15504}=\sqrt{16*969}=\sqrt{16}*\sqrt{969}=4\sqrt{969}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-4\sqrt{969}}{2*16}=\frac{100-4\sqrt{969}}{32} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+4\sqrt{969}}{2*16}=\frac{100+4\sqrt{969}}{32} $
| 2(2x-3)-3(x+1)=9 | | 29=4f-35 | | x+5x-13=149 | | -2/5y=12 | | 70=6d-14 | | 4(x+7)=8x+8-4x+20 | | X-6+x+4(x+6)=30 | | -2x-11=7-x | | 8x+1.2=4x+4 | | x÷2-8=-13 | | 8x-(4x+7)-6=1/3(9x-21)-6x+8 | | 8+4=-6(5y-2) | | 24=4(d-88) | | 16x+3.6=12x+6 | | 4m-6=5+2 | | -x-30=-50 | | 5x-12+x=180 | | 14=24-5x | | x/4+1=20 | | y^2+41y−371=0 | | y2+41y−371=0 | | (6x-1)+(7x-1)=180 | | 7(1-4x)=203 | | 2^3=2^x | | x-1=33 | | -4x=4560 | | x/4=6-89 | | 9=21-4c | | 9=21-4g | | 4x2-3x+9=2x+1 | | -6x^2+120-624=0 | | 9d-8d-9d+7d=-11 |